Content-Based Recommendation Systems

نویسندگان

  • Michael J. Pazzani
  • Daniel Billsus
چکیده

This chapter discusses content-based recommendation systems, i.e., systems that recommend an item to a user based upon a description of the item and a profile of the user’s interests. Content-based recommendation systems may be used in a variety of domains ranging from recommending web pages, news articles, restaurants, television programs, and items for sale. Although the details of various systems differ, content-based recommendation systems share in common a means for describing the items that may be recommended, a means for creating a profile of the user that describes the types of items the user likes, and a means of comparing items to the user profile to determine what to recommend. The profile is often created and updated automatically in response to feedback on the desirability of items that have been presented to the user.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach

In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...

متن کامل

Taking Advantage of Semantics in Recommendation Systems

Recommendation systems leverage product and community information to target products to consumers. Researchers have developed collaborative recommendation systems, content-based recommendation systems and a few hybrid systems. We propose a semantic framework to overcome common limitations of current systems. We present a system whose representations of items and user-profiles are based on conce...

متن کامل

Trends in Content-Based Recommender Systems

This article reports on the CBRecSys 2015 workshop, the second edition of the workshop on new trends in content-based recommender systems, co-located with RecSys 2015 in Vienna, Austria. Content-based recommendation has been applied successfully in many different domains, but it has not seen the same level of attention as collaborative filtering techniques have. Nevertheless, there are many rec...

متن کامل

Development of an Instrument to Study the Use of Recommendation Systems

Web-based recommendation systems are becoming increasingly popular. Systems ranging from those like Siteseer that use user’s bookmarks as surrogates for preferences to those that provide content-based and collaborative recommendations are gaining user’s attention. This study proposes a validated instrument to measure such constructs as perceived usefulness, perceived ease of use, perceived cont...

متن کامل

Music Recommendation by Modeling User’s Preferred Perspectives of Content, Singer/Genre and Popularity

As the amount, availability and use of online music increase, music recommendation becomes an important field of research. Collaborative, content-based and case-based recommendation systems and their hybrids have been used for music recommendation. There are already a number of online music recommendation systems. Although specific user information, such as, demographic data, education and orig...

متن کامل

Content-Based Music Recommender Systems: Beyond simple Frame-Level Audio Similarity Dissertation zur Erlangung des akademischen Grades

This thesis aims at improving content-based music recommender systems. Besides a general introduction to music recommendation and an in-depth discussion of evaluation methods of content-based music recommender systems, improvements on two different abstraction levels are considered in this thesis: The first and most obvious way to improve a content-based music recommender system is to improve t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007